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Abstract- A mathematical nodel of isostatic pressing in a cylindrical container is elaborated. The
influence of the container geometry, the container and the powder constitutive properties on
shrinkage anisotropy (chang,~ of the powder specimen's aspect ratio) is analyzed. The idea of using
containers with different thicknesses of the lateral and end face walls for controlling the shrinkage
anisotropy is suggested. Moclel experiments on HIPing of copper powder in a copper container are
carried out. The design principle of proportionality of the ratio of container wall thicknesses and
the ratio of container internal dimensions is analytically derived and experimentally tested. © 1998
Elsevier Science Ltd. All rigtts reserved.

I. INTRODUCTION

The production of near-net shape components by hot isostatic pressing is one of the actual
problems of modern powder technologies. At first glance, one could expect, that the
shrinkage of a porous body under conditions of the uniform hydrostatic compression is
self-similar, changing only the volume without changing the shape. This assumption,
however, turns out to be justified only in the ideal case of homogenous article properties
and uniformity of the external load. In practice, for most cases, these conditions are not
met, as a result of which the shrinkage becomes variable in different parts of the porous
object's volume. Therefore, it is important to identify the crucial factors, having an influence
on shrinkage inhomogeneity. Control of these influences can provide the production of
near-net shape components.

For hot isostatic pressing, three groups offactors, having an impact on shape formation
and receipt of the final configuration of an article, can be distinguished:

• heat influence (in particular, temperature field nonuniformity) ;
• inhomogeneity of macrostructure parameters (for example, porosity field) ;
• container influence.

During HIPing a nonuniformity of the temperature field can cause the so-called
"densification wave effect", which has been analysed in a number of works (Li et al., 1987,
1991); Li and Easterling, 1992; Olevsky et al., 1994). Owing to the nonuniform initial
warming-up of the porous specimen, the hotter outer layers are densified faster, forming a
dense skin, which subsequently can impede the shrinkage of the internal part of the porous
specimen. The ratio between the velocities of the propagation of temperature and density
fronts has been determined by Li et al. (1987) as a criterion of this phenomenon existence.
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The dependence of:he densification wave effect on the nonlinearity of the rheological
properties of a matrix phase material (porous body skeleton) was analysed by Olevsky et
al. (1994). It has beel shown that the densification wave appears under considerably high
degrees of this nonlinearity only.

Formally, the heterogeneity of the temperature field can be used for production of the
requisite final shape of an article by means of application of an evident technical idea
of the nonuniform heating of different parts of porous specimen. However, apart from
shortcomings conne2ted with the above-mentioned "densification wave effect", con­
siderable difficulties of the technological realization of this idea should be noted.

The use of porous specimens with nonuniformly spatially distributed porosity con­
sidered by Maximenko et al. (1994) is an example of the application of the second group
of factors (heterogereity of macrostructure parameters) for controlling the final shape of
an article. Different parts of the porous specimen, having a different porosity, undergo a
different shrinkage during HIPing. In such a manner, for example, a "dumb-bell" shape
can be obtained from a cylindrical porous specimen. The necessity of the preliminary
preparation of a nonuniformly dense porous specimen, which is a separated technical
problem, is a disadvantage of this method.

The container influence is the most essential factor for the formation of the final shape
of an article (Wadley et al., 1991). The shrinkage anisotropy, being accompanied by the
appearance of the deviatoric stress components in the porous volume, is an important
technological consecuence of a container use. In some works (Li and Easterling, 1992;
McMeeking 1992) this problem is studied for pressing of a powder cylinder in a long tube
without considering the influence of the container bottoms. In the works of Besson and
Abouaf (1990), and Xu and McMeeking (1992) the deformation of the container is analysed
on the basis of the shell theory. It is evident, however, that for hot deformation processes,
not only powder viscms-plastic properties' nonlinearity should be taken into consideration,
but the nonlinearity of the container viscous-plastic properties as well.

The finite-element method (FEM) provides the most full analysis of the deformation
picture of the powder-container system (Besson and Abouaf, 1992; Aboudance et al., 1994:
Govindarayan and Aravas, 1994; Jinka et al., 1994; Zahrah et al., 1994).

In HIPing practice, the container are often applied, whose wall thickness is significantly
smaller than characteristic dimensions of an article. Therefore, if one single discretization
network is used, it is necessary to make it throughout the article as fine as in the volume of
container. A considerable amount of the HIPing numerical investigations deals with this
approach to the modeling. This is not a good use of computer capacity but otherwise a
considerable dimenSion difference of elements requires special algorithms in order to avoid
solution of an ill-conditioned set of equations (Cook, 1974). In addition, the problem is
also dramatized by the strong nonlinearity of the material constitutive equations. These
troubles are not spe2ific features of the HIPing computer simulation only, but they have
crucial importance [.)r the correct shape change prediction in processing at hand. Thereby,
the elaboration of ~iimple and highly efficient numerical approaches remains a current
challenge for specialists in modeling.

In the present work a modification of the variational principle, being the basis of
the FEM for the dl::termination of a field of unknown kinematic parameters (velocities,
displacements), is sLggested. The modified finite-element algorithm is realized by a simple
example of the solution of the problem of HIPing in a cylindrical container. Along with
this, the technological idea of using the container with different thicknesses of the lateral
and end face walls for controlling the shrinkage anisotropy, is suggested and analysed. The
calculation results obtained are compared with the experimental data for HIPing the copper
powder in cylindric:J copper and steel containers.

2. THE PHENOMENOLOGICAL MODEL OF CONSOLIDATION OF POROUS BODIES

In all the speculations mentioned below, a porous medium is described as a two-phase
continuum of a matrix type. Non-linear, incompressible and isotropic properties of the
matrix phase are asmmed. The second compressible phase comprises voids and determines
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the irreversible volume chan~;e of the entire porous medium. The deformed solid is regarded
as a whole, endowing it with the ability to change not only its shape but also its volume.
The macroscopic parameter~; in rheological relationships, such as stress tensor (1i;' strain
rate tensor eij' density p, velocity components Vi and other are spatial averages over a
representative volume which is much larger than the typical dimension of pores but smaller
than the one of the macroscopic porous body considered. The porosity eis a very important
parameter, which can be determined as the ratio of the pores' volume and the total volume
of the representative element.

The derivation of the cO:J.stitutive law for a porous medium can be performed through
averaging stresses and strains over a properly chosen unit cell of material. In the case of
nonlinear-viscous or rigid-plastic behaviour of the skeleton of porous body, a method of
the creep potentials has enjoyed the widest application. The creep or dissipation potential
is an extension of the well-known Rayleigh dissipation potential to the nonlinear behaviour
of material. Like Rayleigh potential it has some useful mathematical properties. For an
isotropic media, the creep potential <1> is a positive and homogeneous function with respect
to the invariants of the strain rate tensor. This enables the determination of the average
stresses in the medium as follows (Kachanov, 1971):

(I)

The dissipation potential is related to the energy dissipation rate density in material.
If <1> is assumed to be independent of the third invariant of the strain rate tensor, the
relationship between the cret::p potential and the average dissipation rate D has the form
(Mosolov and Myasnikov, 1981):

i' dK
<1> = D(Ke, KY)--

o K
(2)

where e, yare the first invariant of the strain rate tensor and the second invariant of the
deviator of this tensor, respectively.

The development of constitutive eqn (I) is possible if the average energy dissipation
density is known as a function of a porosity, physical parameters of the skeleton of porous
body and the average strain rates. The specific form of 0 for the different topological
micromechanical model of the porous body can be obtained only from the comprehensive
numerical experiments. For a porous medium, detailed computer calculations proved that
an approximation for D is po,sible in the following form (Sofronis and McMeeking, 1992;
Kuhn et at., 1993):

(3)

The solid constituent (porous body skeleton) is assumed to obey the power law creep under
uniaxial loading

(4)

where (J, i; are the stress and the axial strain rate in this case. Generally, relation (4) is
controlled by physical mechanism of viscous flow and can be determined by hot isostatic
pressing diagrams (Arzt et at., 1983). In general, parameters t/J, qJ are functions of porosity
and power law exponent ct.. In the case when e< 2/3 it is noted (Olevsky et at., 1996) that:
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q> = (1-8)2

l/J = 2q>(1- 8)/38 (5)

These expressions for q> and l/J are derived by the extrapolation of the results obtained for
the rheologies close to the linear-viscous one.

If eqn (3) is valid, the creep potential has the following form

I
<I>=-D

IX+I

If the matrix material is a strain-hardening one, we stipulate that

(6)

(7)

where Uj is an initial yield limit, U2 is a coefficient of hardening and f3 is a degree of
hardening. Accumulated deformation w is a generalization of the Odquist's parameter
(Kachanov, 1971) tD plasticity of porous bodies. In both cases the derivative of w with
respect to time can be given in the following form:

dw D
cit = (T-8)uo

(8)

where the dissipation rate D is taken from eqn (3) for IX = O. From the physical point of
view the validity of eqn (8) results from the feasibility of continuous transformation of
porous material inte incompressible one with (J ~ O. For the incompressible plastic material,
(J = 0 and d8/dt = O. If porosity approaches zero, the first right-hand term in the brackets
of eqn (3) tends to z~ro because e ~ 0 and function q> is always specified in a way to provide
q> ~ I for (J ~ O.

The right-hand side of eqn (8) can be considered as a definition of the average strain
rate intensity W in the skeleton of a porous body:

D
W=---­

(1-8)uo
(9)

3. THE EXTREMUM PRINCIPLE FOR CALCULATION OF HIPING IN CONTAINER

The determination of the fields of the unknown kinematic parameters of deformation
(in our case they are velocities of the powder and the container, being deformed) is the
main component of the wide range of finite-element algorithms, describing deformation
processes in continuum medium. For this purpose, the extremum principle can be used,
implying the requirement of the extremity of the functional

I = In <D dO - In F' v dO-1 T· v dS (10)

where 0 is the volume deformed, S is its surface area, F and T are body forces and surface
traction, respectively, v is a velocity vector. Based on the most general assumption of the
form of <1>, it was obtained by Mosolov and Myasnikov (1981) that the real field of flow
velocities imparts minimum value to the functional I:

fl real flow velocitie~ -7 min (11)

The most common and widespread HIPing technology is a compaction of powder
under the uniform pressure. In this case, the vector of surface traction has only one
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component, which is normal to the surface and equal to the external pressure P. After
simple arrangements, the surface integral in eqn (10) can be transformed into the volume
integral and the extremum principle assumes the following form:

I = In (<I>-Pe) dO (12)

It should be noted that the dissipation rates and the creep potentials have different
forms in the powder and in the container volume. The total volume 0 embraces both
constituents of the porous specimen.

4. THE CALCULATION OF THE SHRINKAGE ANISOTROPY UNDER HOT ISOSTATIC
PRESSING IN A CYLINDRICAL CONTAINER

Consider the application of the above-mentioned approach for the description of the
HIPing of the cylindrical article for the simplest case of a subdivision of the object to be
investigated into finite elements. One element corresponds to a powder and two elements
correspond to the container, the first one corresponds to the lateral part, and the second
one to the bottom (Fig. 1). The above-mentioned scheme excludes the influence ofcontainer
corners on shrinkage anisotropy. A single influencing geometrical factor is the wall thick­
ness.

Further, the condition of full bonding of the powder and the container is used. As
indicated below, in this case the variational functional can be expressed in terms of the two
independent variables, which are radial er and axial ez porous specimen strain rates.

4.1. The derivation of the kindic equations for the volume shrinkage and the porous specimen
size evolution

Consider the problem in axisymmetrical formulation. Strain rates of the powder
elements have the form:

(13)

where Rand h are the rate5 of change of powder porous specimen radius and height,
respectively. From the full bonding condition, the container strain rates are

powder

.
r

Fig. 1. HIPing of a cylindrical porous specimen in container. The scheme excludes the influence of
container corners on the shrinkage anisotropy.
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(14)

where indices cl and c2 correspond to the lateral and the bottom elements of the container,
respectively. The remaining strain rate components have the form

(15)

where til and tiz are the rates of change of the container lateral and bottom thickness,
respectively.

From the condition of the volume conservation (see Appendix I) :

The rate of change of the powder volume is

The rate of change of the powder body shape is

ezeZ = - 2er (16)

(17)

(18)

The expressions, alalogous to eqn (29), for the rates of the container elements' shape
change }'el and feZ can be obtained using the components en ez and the incompressibility
condition for the component e<p'

In accordance with eqn (12), the functional I can be rewritten in the following form:

(19)

where I p corresponds to dissipation in powder, leI and I ez correspond to dissipation in the
lateral and bottom dement, respectively. The term I p has the form eqn (3) with parameters
(Top, :Xp and volume of the powder is

(20)

The equation for I p is conveniently reduced after introducing the following notations and
the similar notations no A e for the parameters of the container.

(21 )

In this case, <D = A~ W np
, and following eqn (12), Ip can be rewritten as:

(22)

The constituents of the functional eqn (12) associated with the container have the
following form :
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The volume of the lateral part of the container is:

and the volume of the bottom part is :

2289

(23)

(24)

(25)

Taking into consideration eqns (17), (18), (20), (24), (25), the eqns (22), (23) assume
the form:

(26)

In this case, the Euler equations for the extremum principle eqn (12) are given by:

i3I
--=0
Oer

(27)

Substituting eqns (19) ar.d (26) into eqn (27), we obtain (see Appendix 2) :

[4Jcp(tP + })2).c,R2 +;.c2}r + [2Jcp(tP - 2J)+;.CI R2}z -2 VpP = 0

[2;.p(tP- 2J)+Ac1 R2}r+[,l.p(tP+ 4J)+Acl(2R2+3aIR+~ai)}z-vpP=0 (28)

where
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( (
3a]) )2J(n,-2)/2

+ Re -- R+~ e
r 2 z

(29)

In general case, eqn (28) is a set of nonlinear equations with unknown e" e" and }.p, )'e" Ae2

are the functions of e" ez too. For solving eqn (28), an explicit iteration procedure is used.
The obtained values of the strain rates are substituted into the set of the ordinary differential
equations in order to determine five functions of time: R(t), h(l), a, (I), ail), B(t).

dR
-=Redt r

Rer + (R+ a;)ez
da]
dt = -at R+a\

da2
dt - -2era2

(30)

The last equation corresponds to the continuity condition for a powder material.

4.2. Influence of the container geometry on shrinkage anisotropy
An analysis of the evolution of the ratio erlez in the capacity of one of the criteria of

shrinkage anisotropy is of interest here. It follows from eqn (28), that

(31 )

In the case oflinear-viscous properties of powder and container (np = ne = 2), }.p, )'e[,

Ae2 do not depend on the strain rates. In general, these coefficients depend on e" ez•

The equation e)ez = I can be accepted as a criterion ofan isotropic shrinkage. Express­
ing the right-hand part of eqn (31) in terms of the ratio er/ ez and setting this value equal to
unit for both parts Df eqn (31), one can obtain:

(32)

In the general case, eqn (32) is a criterion of "instantaneous" isotropy.
For the case of linear-viscous properties of the container material (ne = 2), (32) is

transformed into tt.e form:
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2

For the ideal plastic properties of the container material (nc = I):

2291

(33)

(34)

For a small lateral wall thickness (a1iR« 1), we obtain a simple relationship for any
container rheology (l =::::; nc =::::; 2)

(35)

which can be, apparently, used as a first approximation for container design.
Thus, for the above mentioned case, in order to avoid shrinkage anisotropy, the ratio

between container wall thicknesses should be proportional to the ratio of the dimensions
of the internal space of the container in the directions perpendicular to these walls. As
follows from eqns (33) and (34), in order to avoid anisotropy, the ratio between bottom
and lateral wall thickness has to be increased when the ratio between the lateral wall
thickness and container radics increases.

For a wall thickness, which does not satisfy the condition adR « I, as a consequence
of eqns (32)-(34) we have

(36)

where ell = aliR is the relative thickness of the lateral wall, ell = alih is the relative thickness
of the bottom. The last inequality means that the relative bottom thickness could always
be larger than the relative thickness of the lateral wall to avoid anisotropy of shrinkage.

It follows from eqn (36) :

that is

(ell) (ell) (ell)l=::::;-=- =::::; -=- =::::;-::-
a 1 linea.-Rviscouscase a I nonlinear case a I ideal plastic case

(38)

The latter means that with inc:-easing of the nonlinearity of the container material properties
the deviation of the container geometry from the "equi-thickness" case becomes larger.
Inverting this statement, we can conclude that for the highly nonlinearity of the container
material properties, the inten~;ity of anisotropy is bigger.
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As may be seen from eqns (31) and (32), the rheological properties of the powder do
not influence the sign and existence of an isotropy on their own. They have impact only on
the intensity of the deviation from an isotropic case.

It is of interest to determine the influence of the nonlinearity of the powder rheological
properties on the value of this deviation. In accordance with eqn (3 I), the intensity of
shrinkage anisotropy is inversely proportional to the value of Ap • Therefore, a relationship
between J.p and the exponent np should be determined. From eqn (29) it follows that this
relationship depend~; on a current value of W, e.g. on the current process velocity. It can
be shown that for a low speed process, when (see Appendix 3) :

r--.- 6 (- Qcp (Tm )) IW < y'exp( -2) 1O~ exp --~ - -2 -
RgTm T sec

(39)

the higher nonlinearity of the powder properties promotes the lower intensity of anisotropy.
For a high-speed process, when

J~- 6 (- Qcp (Tm )) 1W> exp( -2) 10- exp --- - -2 -
RgTm T sec

(40)

the lower intensity of anisotropy corresponds to the more linear powder material properties.

5. SAMPLE CALCULATIONS FOR VOLUME SHRINKAGE AND RESULTS OF THE
EXPERIMENTS ON HIPING

Consider a process of hot isostatic pressing of copper powder in a stainless steel
container. The input parameters used in accordance with Ashby (1990) are given in the
Appendix 4.

The results of the calculations for the different powder porous specimen and container
sizes are representd in Fig. 2. The calculation data lend support to the container design
idea expressed by eqn (35). The results in Fig. 3 and 4 correspond to the calculations of the
hot isostatic pressing of copper powder in a copper container. The data represented in
Fig. 3a are obtained for the initial sizes of the container corresponding to those used in
the experiments of Wadley et al. (1991). Here the wall thickness is accepted to be
2mm.

For this case, the evolution of the ratio between the diameter and length change is
represented in Fig. 3b. This value, which is accepted as a constant in the above-mentioned
work of Wadley et al., being initially 2.0, reaches in the end of the process the value of 2.4,
which is close to the value 2.5 pointed out by Wadley et al. (1991).

As it follows trom Fig. 4, the intensity of the shrinkage anisotropy for pressing in a
copper container is smaller than in the case of pressing in a steel container. This confirms
the idea of lower intensity of the shrinkage anisotropy for the lower nonlinearity of the
container material properties.

An idea of using a container with different wall and bottom thickness has been analysed
in a number of experiments on hot isostatic pressing of copper in a copper cylindrical
container. In order to avoid the container corners' influence, a can with one cornerless end
face has been produced (Fig. 5). The corners are absent at the second end face because of
the necessity of the placement of the vacuumization system. In doing so, it is assumed that,
in view of the long axial size of the container, deformations of the different end faces can
be considered to be independent of one another. Thus, after HIPing, change of sizes of the
free cornerless end face was analysed.

For the same initial sizes of the container, the same pressure, time and different
temperatures, two experiments were carried out (Table 1). The containers were produced
in accordance with the design relationship eqn (35). The comparative data on the final sizes
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Fig. 2. Shrinkage kinetics and container size evolution. HIPing pressure is 100 MPa, temperature is
750 c C; copper powder, stainless steel container: (a) equal bottom and lateral wall thicknesses; (b)
proportional bottom and lat(:ral wall relative thicknesses (in accordance with eqn (35); and (c)
inversely proportional bottom and lateral wall relative thicknesses--highest deviation from the

isotropic shrinkage.

of the container elements and the final porosity, corresponding to the experiments and the
model calculations are represented in Table 2.

By and large, the experinent indicates that, for reaching shrinkage isotropy, the idea
of proportionality of the n.tio between container wall thickness and the ratio of the
dimensions of the internal space of the container in the perpendicular to these walls
directions is justified. Some deviations of the final values of the normalized aspect ratio
from unit can be explained by the influence of the deformation of the end face with corners
on the deformation of the cornerless end face as well as by the approximate character of
expression eqn (35). The analysis of container corner's influence on shrinkage anisotropy
under isostatic pressing will be a topic of investigations represented in the second part of
this paper (Olevsky and Maximenko, 1998).
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Table I. Initial HIPing parameters for the experiments and the calculations

Initial wall Initial bottom Temperature, C
Initial internal Initial internal thickness of thickness of Initial Pressure. MPa

length. mm diameter. mm the can. mm the can, mm porosity Time. min

(a) Experiment 140 28 2 10 38 750
100
120

(b) Experiment 140 28 2 10 38 900
100
120



Shrinkage anisotropy of a cylindrical specimen 2295

0.25.,---------------,

__--,2

Can thickness evolution

0
CD CD CD CD CD CD

a It! "": ~ N ... M CD .. Ol III ~
a a N N M M ... ... lti CD

Time, hours

0.2

0.05

5 0.15

'i
... 0.1

Porosity evolution

0
CD ~ CD CD CD CD CD

a III "": ~ ~ ~ ~ <Xl .. Ol III ~
0 0 N N M M ... ... lti CD

Time, houru

0.7 -,----------------,

0.5

0.6

0.1

0.2

~0.4e
~ 0.3

Height and radius evolution

5 r--=========:=:=lh
4.5

4

3.5

E 3
<>
ri 2.5

~ 2
1.5 f'--~ --.jR

1

0.5

o +---!-----+----+---+_---'
~ m M ~ ~ ~ m M ~ ~ m

o ~ ~ ~ - ~ ~ ~ M ~ ~ ~ ~o 0 N N ~ M ~ ~ ~ ~ ~

TIme, houri'

Normalized aspect ratio evolution

1.6 -
1.4v---0

! 1.2

'U::"' 1"a:0._

:~ 0.8
..,::=.

~~ 0.6..~
E 0.4
0
Z

0.2

0
Ol ... III M 0> ... III M Ol

a III "": ~ M "! .. a CD ~ <Xl M

0 0 ~ ~ N N M ... ... III lti u:i
Time, hours

Fig. 2. -Continued.

Table 2. Final porosit:1 and container sizes for the experiments and the calculations

(b) Experiment/model (a) Experiment/model

125.21/123.17
23.11/23.91

2.8412.60
10.11/13.39
0.00/0.03

1.074;1.03

134.72jl29.44
26/25.63

2.25/2.33
10.14/11.79
0.25/0.20

1.036/1.01

Final internal length, mm
Final internal diameter, mm
Final wall thickness of the can. mm
Final bottom thickness of the can, mm
Final porosity
Final normalized aspect ratio
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Fig. 3. Calculations for the conditions of the experiment of Wadley et of (1991). HIPing pressure is
75 MPa. temperature is 550'C; copper powder. copper container; (a) shrinkage kinetics and
container size evolution; and (b) evolution of the ratio between the length and diameter change (a

constant value of2.5 is accepted for this ratio in the paper of Wadley et of (1991)).
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Fig. 4. Shrinkage kinetics and container size evolution. HIPing pressure is 75 MPa, temperature is
550"C; copper powder, copper container; (al equal bottom and lateral wall thicknesses; (b)
proportional bottom and lateral wall relative thicknesses (in accordance with eqn (35»; and (c)
inversely proportional bottom and lateral wall relative thicknesses-highest deviation from the

isotropic shrinkage.
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under investigation --
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... to vacuum pump
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Fig. 5. Design schematic for a cornerless container. Deformations of the different end faces are
a:;sumed to be independent of one another.
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APPENDIX I

The volume conservation condition for the container lateral element:

The volume conservation condition for the container bottom element:

d, Ii, R
-[21!R"a,J =0=-= -2-=e", = -2e,
dt ~ R

APPE]\;DIX 2

Taking into consid~rationexpression (19), equation (27) can be represented as follows:

N p aid Cld
-::,- + -.- + "'- = 0
De r eer ce r

In virtue of eqn (26), the partial derivatives in the latter relationships are given by:
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APPENDIX 3

2303

Following Ashby (1990), the rdationship between the equivalent stress (J and the equivalent strain rate W
can be determined:

[
(J J'" {~Q (T )} IW = - exp ---' ---'" - 2 10 - " ~-

(Jeer Rg Tm T sec

where (Jee,is the reference stress for power-law creep, MPa; 111 is the power-law creep exponent: Q, is the activation
energy, KJ/mol: R, is the gas constant; Tm is the melting point, K; Tis temperature,K. Transform the last
equation into the form (J = A W' used in our derivations:

(J ~= (Jeefexp{ QT, _(Tm -2)}(lOh sec It')''''
Rg ml1l T

For our designation:

I
n=-+I

m

APPENDIX 4

The input parameters for a copper powder:

Tm = 1356K;

_ {0.65' KJ/mol
Q'r -

197 KJjmol,

for a stainless steel container

",e' = 220 MPa;

Tm = 1680K;

_ {0.65' 270 KJimat,

Q'r - 270 KJ imol,

ifT < 600 K

ifT> 600 K

ifT< 840K

ifT> 840K


